Prediction of Pressure Gradient and Holdup in Small Eötvös Number Liquid-Liquid Segregated Flow
نویسنده
چکیده
The segregated flow pattern, which occurs in a 26.1 mm diameter, horizontal, stainless steel test section, is investigated. Pressure gradient and in situ phase distribution data were obtained for different combinations of phase superficial velocities ranging from 0.05 m·s 1 to 0.96 m·s . For the current small Eötvös number liquid-liquid system (EoD 4.77), the dominant effect of interfacial tension and wall-wetting properties of the liquids over the gravity is considered. The approach introduces the closure relationship for the case of turbulent flow in a rough pipe, and attempts to modify the two-fluid model to account for the curved interface. In present flow rates range, wave amplitudes were found small, while interfacial mixing was observed. An adjustable definition for hydraulic diameters of two fluids and interfacial friction factor is adopted. The predicted pressure gradient and in situ phase distribution data have been compared with present experimental data and those reported in the literature.
منابع مشابه
Flow Pattern and Oil Holdup Prediction in Vertical Oil–Water Two–Phase Flow Using Pressure Fluctuation Signal
In this work, the feasibility of flow pattern and oil hold up the prediction for vertical upward oil–water two–phase flow using pressure fluctuation signals was experimentally investigated. Water and diesel fuel were selected as immiscible liquids. Oil hold up was measured by Quick Closing Valve (QCV) technique, and five flow patterns were identified using high-speed photo...
متن کاملTwo-fluid Electrokinetic Flow in a Circular Microchannel (RESEARCH NOTE)
The two-fluid flow is produced by the combined effects of electroosmotic force in a conducting liquid and pressure gradient force in a non-conducting liquid. The Poisson-Boltzmann and Navier-Stokes equations are solved analytically; and the effects of governing parameters are examined. Poiseuille number increases with increasing the parameters involved. In the absence of pressure gradient, the ...
متن کاملGas-non-Newtonian Liquid Flow Through Horizontal Pipe – Gas Holdup and Pressure Drop Prediction using Multilayer Perceptron
Prediction of the gas holdup and pressure drop in a horizontal pipe for gas-non-Newtonian liquid flow using Artificial Neural Networks (ANN) methodology have been reported in this paper from the data acquired from our earlier experiment. The ANN prediction is done using Multilayer Perceptrons (MLP) trained with three different algorithms, namely: Backpropagation (BP), Scaled Conjugate gradient ...
متن کاملAn Artificial Neural Network Model for Predicting the Pressure Gradient in Horizontal Oil–Water Separated Flow
In this study, a three–layer artificial neural network (ANN) model was developed to predict the pressure gradient in horizontal liquid–liquid separated flow. A total of 455 data points were collected from 13 data sources to develop the ANN model. Superficial velocities, viscosity ratio and density ratio of oil to water, and roughness and inner diameter of pipe were used as input parameters of ...
متن کاملFlow Pattern Identification and Pressure Drop Calculation for Gas-Liquid Flow in a Horizontal Pipeline
Two phase gas-liquid flow pattern in a horizontal pipeline is predicted very accurately using a newly-developed analytical relation. The pattern identification is based on one of the most widely used graphs, the Baker diagram, modified in a way that compensates for the unrealistic oversimplifications of recent works. The Kern's method of pressure drop calculation is used to obtain the frict...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015